

How Treatability and Molecular Testing Saves Time, Money and Heartburn

siremlab.com

Phil Dennis Remediation Seminars Short Course **Optimization and Monitoring** for Remediation of Chlorinated and Related Compounds 29 April 2020 Webinar

Two Key Questions...

- What is the best remediation approach?
- Once implemented is the remediation strategy working?

Treatability and molecular testing help to answer both questions **SiREM**

THE WHAT, WHY AND HOW OF TREATABILITY STUDIES

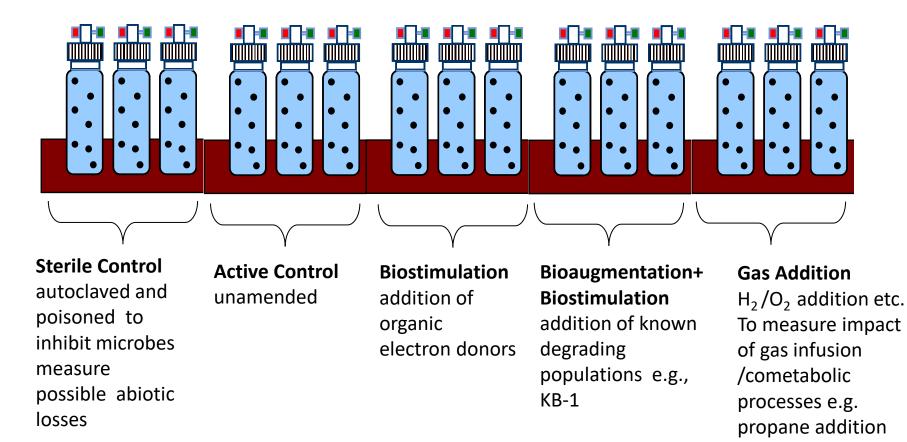
What is a Treatability Test?

- Laboratory "bench-scale" testing
 - Use site soil, sediment or rock and groundwater
- Microcosms or columns constructed using site materials
- Customize treatment variables to meet site specific needs
- Monitor contaminant degradation under various condition
- Site-specific remediation recommendations reported

SiREM

treatability studies

Treatability studies are typically microcosm or column tests for technologies including:


- Anaerobic and aerobic bioremediation
- In situ chemical reduction (e.g., ZVI)
- In situ chemical oxidation
- Sediment remediation

SiREM

Microcosm Study Typical Design

Treatability studies are custom designed for each site

What Treatability Studies Can Tell You?

- Electron donor/acceptor/cometabolite consumption
- Degradation intermediates/pathways
- Effect of controlling variables (e.g., pH, redox, amendment addition, inhibitory effects, oxidant demand, persulfate activators)
- Residence time/longevity for PRBs
- Contaminant degradation rates/lag times
- Insight into pilot-test design

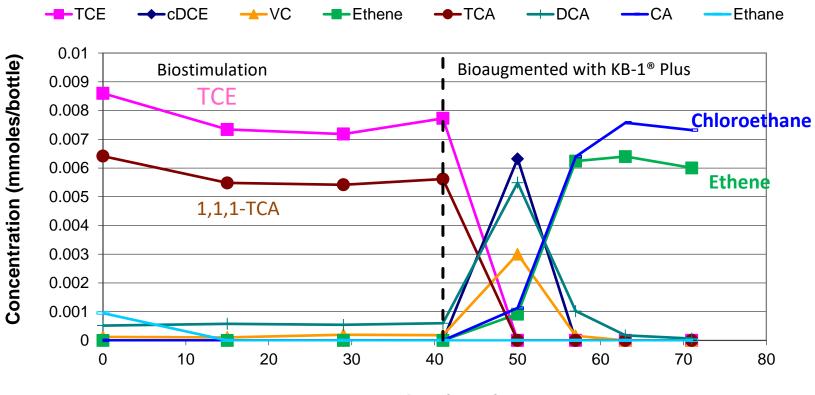
Why Use a Treatability Test?

- Allows evaluation of multiple remedial options prior to field implementation
- Optimization of a selected remedy
- Studies are flexible allowing changes "on the fly" in the lab
- Regulatory approval for injections is not required
- Manageable, incremental risk from lab to pilot to full-scale
- Reassures stakeholders that the selected remediation approach is feasible prior to field implementation

SiREM

TREATABILITY CASE STUDIES

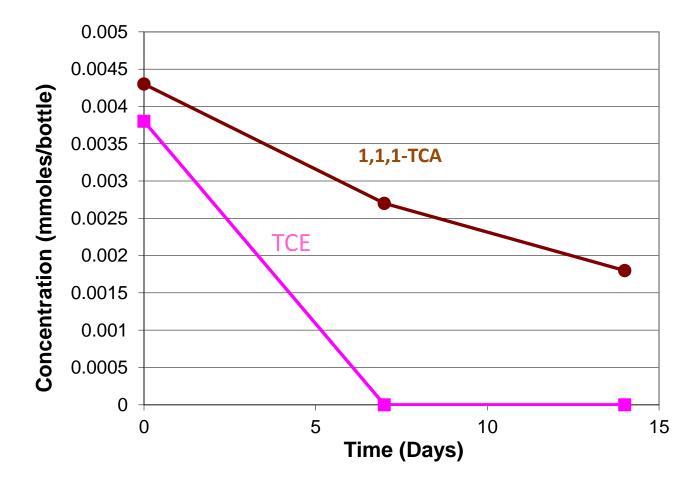
Case Study: Denmark Site


- Mixed chlorinated ethenes and ethanes
- 1,1,1-TCA (5 mg/L) and TCE (5mg/L)
- Can potential inhibition by 1,1,1-TCA be overcome?
- Is ISCO with persulfate viable remedial option?

Study Design:

- Anaerobic Sterile Control
- Anaerobic Active Control
- EVO Amended/KB-1[®] Plus Bioaugmented
- Base Activated Persulfate

Case Study: Denmark Site



Time (Days)

Activated Persulfate

Conclusions-Denmark Study

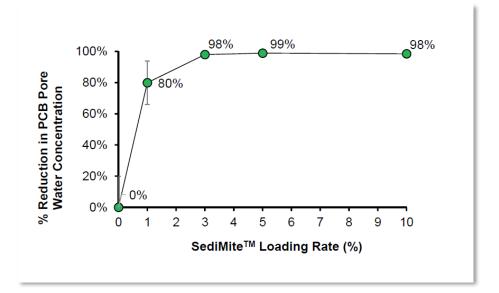
- Biostimulation alone=no dechlorination TCE/1,1,1-TCA
- KB-1[®] Plus bioaugmentation + biostimulation= rapid dechlorination-but with chloroethane accumulation
- Activated persulfate complete and rapid degradation of TCE slower and incomplete for 1,1,1-TCA

Based on study results enhanced bioremediation was selected as site remedy

Image courtesy of SediMit

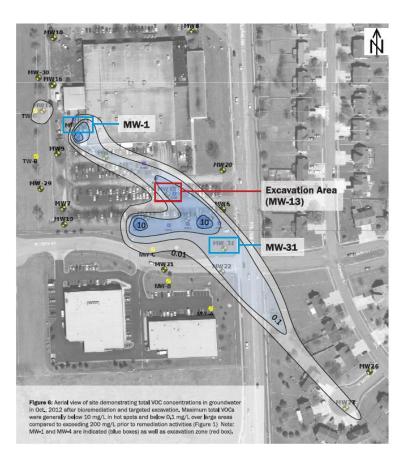
Treatability Study for Active Cap Optimization

- Bench-scale treatability test to evaluate how much activated carbon (SediMite[™]) to add a PCB-impacted sediment
- PCB availability was measured because addition of the carbon changes availability not total PCB concentration
- Availability measured via SiREM passive samplers (SP3[™]) in site sediment amended with different SediMite[™] loading rates



Case Study: PCB Active Cap Optimization

 Study results revealed significant reduction in PCB availability even at low SediMite loadings (1-3%)


Study cost~\$10K findings saved more than \$300K in excess SediMite costs

Treatability Testing Aided Decision Making

- Kansas site with high concentration mixed VOCs including dichloromethane
- MW-1:10 mg/L DCM attenuated successfully MW-13: 200 mg/L DCM-degradation not observed
- Treatability testing indicated that >160 mg/L DCM was not biodegradable with available bioaugmentation cultures
- 500 tons of soil in MW-13 area removed in 2009 to remove DCM source area

Study justified moving quickly to excavation saved time and money on likely futile bioremediation attempt

MOLECULAR GENETIC TESTING

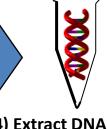
Molecular Genetic Testing

- For site remediation typically DNA based tests on groundwater/soil
- Quantitative polymerase chain reaction (qPCR) tests used to quantify specific microorganisms and functional genes critical to bioremediation processes
- Next generation sequencing (NGS) to characterize entire microbial population

Bubble plot output from NGS report (right) indicates the relative proportion of the major microbes in a sample

Bacteroidaceae 30 Bacteroidaceae 39 Bacteroidaceae 45 -Bacteroidaceae_46 = Bacteroidales_21 Bacteroidales_31 Bacteroidales 36 Bacteroidales_37 Bacteroidales 5 Bacteroidales 7 Bacteroides_38 BD1-5 23 CandidatusMethanoregula 9 Dehalococcoides_1 Desulfobulbus 17 Desulfosporosinus sp._74 Desulfotomaculum sp._13 Desulfovibrio sp._18 -Desulfovibrio sp._4 envOPS12_42 Geobacter sp. 8 Geobacter_34 Geobacter_530 Hydrogenophaga 22 Magnetospirillum 24 Methanobacterium 35 Methanocorpusculum_2 Methanoregulaceae_6 Methanosaeta_33 Methanosarcina_11 Methanosarcina 643 Methanospirillum_126 Methanospirillum 14 Methylococcales_0 -ML615J-28_25 -OPB41 20 · Opitutaceae_26 p-2534-18B5 29 Paludibacter 48 Parvarchaea 52 Porphyromonadaceae 58 RFN20 63 Rhodobacteraceae_27 Rhodoferax 15 SB-1 19 Sulfuricurvum sp._28 Syntrophomonas_16 Syntrophomonas 242 -Syntrophomonas 3 Treponema 12 Unclassified_78 vadinCA11_10 = WCHD3-30 32

1.4 3.2 1.5 1.4 11.1 6.7 2.1 6.2 21.9 3.1 1.4 1.1 16.6 3.6 1.9 2.9 2.9 22.7 1.5 6.2 2.5 3.1 4.6 3.7 1.4 MW-B A-WN


Overview of Gene-Trac[®] qPCR Testing

2) Transport 1L GW or field filter to Lab

3) Filter groundwater water samples (NA for field filter)

4) Extract DNA from filter

1) Groundwater Sampling

SiREM

7) qPCR output used to calculate gene copies /L groundwater

6) PCR amplify specific genes (e.g., 16S rRNA/vcrA) with targeted primers in qPCR Machine

5) Assemble PCR Reactions

gene≬trac°

Tests available for a wide range of contaminant classes ...

SiREM

Contaminant Class	Redox	Gene-Trac* Test Name	Target	Relevance
Chlorinated Ethenes		Dhc	Dehalococcoides	Dechlorinates PCE, TCE, all DCE isomers, VC
		Dhb	Dehalobacter	Dechlorination of PCE &TCE to cDCE
	Anaerobic	Dam	Desulfuromonas	Dechlorination of PCE & TCE to cDCE
		Dsb	Desulfitobacterium	Partial dechlorination of PCE and TCE to cDCE
		Geo	Geobacter	Dechlorinates PCE to cDCE/biogeochemical degradation
		Dhg	Dehalogenimonas	Dechlorination of tDCE to VC and VC to ethene
		Chloroethene FGA	Vinyl Chloride Reductase (vcrA)	Dechlorination of cDCE & VC to ethene
			BAV1 Reductase (bvcA)	Dechlorination of cDCE and VC to ethene
			Trichloroethene Reductase (tceA)	Dechlorination of PCE and TCE to cDCE and VC
	Aerobic	Polaromonas	Polaromonas	Aerobic dechlorination of cDCE
		ətn	etnE	Aerobic degradation of VC
Chlorinated Ethanes	Anaerobic	Dhb	Dehalobacter	Dechlorinates 1,1,1-TCA/1,2-DCA /1,1,2-TCA/ 1,1,2,2-TeCA
		Dhg	Dehalogenimonas	Dechlorinates 1,2- DCA, 1,1,2,2-TeCA, 1,1,2-TCA
		Dhc	Dehalococcoides	Dechlorinates 1,2-DCA to ethene
		Dsb	Desulfitobacterium	Dechlorinates 1,1,2-TCA &1,2-DCA
		cfrA/dcrA	Dichloroethane Dehalogenase (dcrA)	Dechlorinates 1,1,1-TCA & 1,1-DCA
	Aerobic	sMMO	Soluble Methane Monooxygenase	Co-metabolism of 1,1,1-TCA & 1,1-DCA by methanotrophs
		PMO	Propane Monooxygenase	Co-metabolism of chlorinated ethanes by propanotrophs
		dhlA	Haloalkane Dehalogenase (dhlA)	Aerobic dechlorination of 1.2-DCA
Chlorinated Methanes	Anaerobic	Dhb	Dehalobacter	Dechlorination of chloroform to DCM; DCM to acetate
		cfrA/dcrA	Chloroform Reductase (cfrA)	Converts chloroform to dichloromethane
	Assobia			
	Aerobic	sMMO	Soluble Methane Monooxygenase	Co-metabolism of chloroform & dichloromethane
Chlorinated Propanes	Anaerobic	Dhg	Dehalogenimonas	Converts TCP to allyl chloride; DCP to propene
		Dhc	Dehalococcoides	Converts DCP to propene
		Dhb	Dehalobacter	Converts DCP to propene
		Dap	Desulfitobacterium	Dechlorination of TCP & DCP
Chlorinated Benzenes	Anaerobic	Dhc	Dehalococcoides	Partial dechlorination of HCB/PCB
		Dhb	Dehalobacter	Reductive dechlorination of DCB, MCB
Chlorinated Phenols	Anaerobic	Dhc	Dehalococcoides	Dechlorination of 2,3-dichlorophenol, TCP and PCP
PCBs	Anaerobic	Dhc	Dehalococcoides	Dechlorinates select Arochlor 1260 congeners
		Dhb	Dehalobacter	Dechlorinates 2,3,4-trichorobiphenyl; 2,3,4,5-tetrachlorobiphenyl
		Dhg	Dehalogenimonas	Dechlorinates select Arochlor 1260 congeners
BTEX	Anaerobic	SRB	Sulfate reducing bacteria (dsrA)	Partners to ORM-2 in anaerobic benzene degradation
		ORM-2	Deltaproteobacterium ORM-2	Anaerobic benzene degrader (SO,/CH, reducing conditions)
		Pepto-ben	Benzene degrading Peptococcaceae	Anaerobic benzene degrader under NO ₃ reducing conditions
		abcA	Benzene Carboxylase (abcA)	Involved in benzene ring cleavage
Fuel Oxygenates	Aerobic	MTBE/TBA	Methylibium petroleiphilum PM1	MTBE/TBE degrading microorganism
			tert-butyl alcohol hydroxylase (mdpJ)	Active on TBA in aerobic MTBE degradation pathway
			HIBA mutase (hcmA)	Active on 2-HIBA in aerobic MTBE degradation pathway
1,4-Dioxane	Aerobic	1,4-dioxane	Dioxane monooxygenase (dxmb)	Energy yielding 1,4-dioxane degradation
	metabolism	1,4-dioxane	Aldehyde Dehydrogenase	Energy yielding 1,4-dioxane degradation
	Aerobic Cometabolism	pMMO	Particulate Methane Monooxygenase	Co-oxidation of 1,4-dioxane in presence of methane
		sMMO	Soluble Methane Monooxygenase	Co-oxidation of 1,4-dioxane
		PMO	Propane Monooxygenase	Co-oxidation of 1,4-dioxane in presence of propane
Nitrogen	Anaerobic	Anammox	Major anammox genera	Anaerobic co-removal of ammonium and nitrite
Prokaryotic Groups	Variable	Universal	Bacteria	Quantifies Bacteria-measure of total biomass
		Arch	Archaea	Quantifies Archaea biomass
		SRB	Sulfate reducing bacteria (dsrA)	Anaerobic hydrocarbon oxidation/biogeochemical reduction/MIC
		NGS	Bacteria/Archaea	Comprehensive characterization of microbial communities

Gene-Trac®

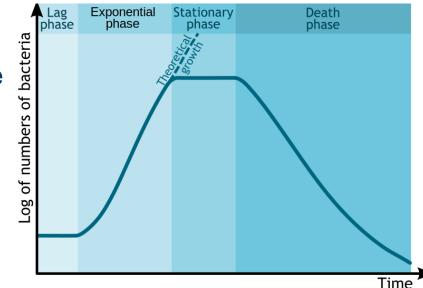
Uses of Molecular Genetic Testing in Bioremediation

Initial Assessment:

- Are the required microorganisms indigenous to the site?
- Is MNA feasible?
- Is bioaugmentation required?

Ongoing Monitoring:

• Impact of site amendments?


Dhc concentrations at 8 Acre FEW AFB KB-1 bioaugmented site as determined by Gene-Trac[®] testing

- Increases growth rate and spread of biodegradative microbes
- Assess impacts of negative events (e.g., redox changes, pH declines)
- Is remediation progressing effectively at <u>all</u> locations?

Dhc Growth Dynamics

- *Dhc* at a site move through microbial growth curve
- *Dhc* in groundwater commonly range from ND to billions (e.g., 10⁹) per liter
- Ethene is dependably observed at >10⁷ Dhc per liter
- Wide range of in situ *Dhc* doubling times observed—indicator of health of population and the suitability of conditions
- Changes in *Dhc* population may occur even where VOC or ethene numbers are not changing –e.g., DNAPL sites

Dhc testing gives advance notice and ongoing assessment of suitability of site conditions for reductive dechlorination

Summary and Conclusions

- Treatability and molecular testing aid planning and assessment
- Provide evidence that is not always available from other types of testing
- The costs of this type of tests are often offset by O&M savings due to improved planning & implementation
- Decreased uncertainty as treatability data provides preview of success prior to field implementation
- Molecular data provides performance preview and assessment during remedy implementation

Further Information

siremlab.com

1-866-251-1747 519-515-0836

Phil Dennis: pdennis@siremlab.com

