

Use of ¹⁴C Assays to Determine Rate Constants for Degradation of Chlorinated Ethenes and 1,4-Dioxane

David L. Freedman, Ph.D.

Professor and Chair Department of Environmental Engineering and Earth Sciences

April 29, 2020

Background – ¹⁴C

- Isotopes of carbon: 12, 13, 14
- Focus today is on the radioactive isotope, carbon-14
- Half life is 5730 years
- Emits β energy during decay

carbon-12 98.9% 6 protons 6 neutrons

carbon-13 1.1% 6 protons 7 neutrons

Measured by compound specific isotope analysis (CSIA)

carbon-14 <0.1% 6 protons 8 neutrons

Measured by photons emitted from scintillators excited by β energy from ¹⁴C decay

¹⁴C has been around

 Use of *radiocarbon dating* extends back to 1946: Developed by Willard Libby at the University of Chicago

- Use of ¹⁴C-labeled substrates to determine *degradation pathways* and measure *degradation rates* has been around for at least 4 decades
 - Lignin Biodegradation Importance and Historical Research Perspective: T. KentKirk, 1976
 - Biological Reductive Dechlorination of Tetrachloroethylene and Trichloroethylene to Ethylene under Methanogenic Conditions: D. L. Freedman and J. M. Gossett, 1989
- Biodegradation studies performed with numerous other ¹⁴C-labeled compounds: chlorinated methanes, fuel hydrocarbons, PAHs, munitions, MTBE, ...

Current Applications

- ¹⁴C assays can be an effective tool for determining rate constants when the degradation products are difficult to discern from other sources, e.g., CO₂, CH₄, and organic acids
- Lab determined rate constants can be helpful for validating rate estimates from concentration versus distance data
- Other tools that provide lines of evidence for degradation include CSIA and biomarkers, but those are not as easily convertible to rate constants
- Bottom line: ¹⁴C assays can provide estimates of rates constants for biotic and abiotic degradation based on product formation

A Few Basics

- Work must be done in a lab licensed to handle radioactive materials
- A limited vendors provide ¹⁴C-labeled material; custom synthesis \$\$\$
- ¹⁴C compounds usually delivered in a solvent (e.g., acetonitrile, butanol) making purification essential
- Prepare a stock solution (e.g., in buffered DDI water)
- Methods are needed for separating the parent compound from ¹⁴C degradation products
- Follow ¹⁴C distribution by counting samples in liquid scintillation cocktail using a liquid scintillation counter
- Use of controls to account for background activity is essential

Example Applications

Current applications of ¹⁴C assays of interest to the remediation community that will be covered today:

- Aerobic co-oxidation of TCE
- Degradation rates for TCE and cDCE in crushed rock or soil microcosms
 - Ambient conditions
 - Improvement in rates with gentle heating
- Degradation rates for TCE to assess back diffusion from rock
- Aerobic biodegradation of 1,4-dioxane

Controls:

• Filter-sterilized groundwater (FSGW)

Total ¹⁴C:

• Initial total ¹⁴C is critical

Total ¹⁴C products:

- Remove 3 mL aqueous samples, weekly
- Raise pH>10 (NaOH) to retain ¹⁴CO₂
- Sparge samples for 30 min with N_2 to remove TCE

End-of-incubation products:

- Confirm ¹⁴CO₂ by ppt with Ba(OH)₂
- Determine percent ¹⁴CO₂

Results: Plattsburgh AFB, NY

- ¹⁴C assay provides quantitative evidence for aerobic TCE co-oxidation; provides rate constants (with confidence intervals) that can be used as a line of evidence to assess MNA
- Capable of predicting 1st order rate constants for TCE degradation as low as 0.0066 yr⁻¹ = halflife up to 105 yr
- ¹⁴C product distribution was 37-97% ¹⁴CO₂ with remainder as soluble and non-volatile products
- Results are published in: Mills, J. C.; Wilson, J. T.; Wilson, B. H.; Wiedemeier, T. H.; Freedman, D. L., Quantification of TCE cooxidation in groundwater using a ¹⁴C–assay. *Groundwater Monitoring & Remediation*, **2018**, *38* (2), 57-67.
- Rates correlate well to rate estimates based on qPCR data for monooxygenases

Wilson, J. T.; Mills, J. C.; Wilson, B. H.; Ferrey, M. L.; Freedman, D. L., Taggart, D. Using qPCR assays to predict rates of cometabolism of TCE in aerobic groundwater. *Groundwater Monitoring & Remediation*, 2019, 39 (2), 53-63.

Example Applications

Current applications of ¹⁴C assays of interest to the remediation community that will be covered today:

- Aerobic co-oxidation of TCE
- Degradation rates for TCE and cDCE in crushed rock or soil microcosms
 - Ambient conditions
 - > Improvement in rates with gentle heating
- Degradation rates for TCE to assess back diffusion from rock
- Aerobic biodegradation of 1,4-dioxane

¹⁴C assay for degradation of cDCE and TCE

- Crushed rock from fractured sandstone site
- Added ~20 g crushed rock + 50 mL GW
- Experimental design
 - ✓ 11 treatments
 - ✓ 12 bottles per treatment; triplicates sacrificed at 4 time intervals
 - ✓ One set received ¹⁴C-TCE, another ¹⁴C-cDCE
- Prepared in anaerobic chamber
- Full results in \rightarrow

Remediation of chlorinated ethenes in fractured sandstone by natur and enhanced biotic and abiotic processes: A crushed rock microcosm study

Rong Yu^a, Richard G. Andrachek^b, Leo G. Lehmicke^c, David L. Freedman^{a,*}

¹⁴C assay for degradation of cDCE and TCE

- Unamended microcosms \rightarrow *in situ* conditions
- Rate constants based on ¹⁴C products formed
- No detectable reductive dechlorination
- Enrichment in δ^{13} C-*cis*-DCE also observed

¹⁴C assay for TCE degradation rate: Results for Microbial Insights

- Single sample of soil received
- GW from 4 wells
- Added ~10 g soil + 94 mL filter sterilized GW from each well
- Triplicate serum bottles for each well
- Prepared in anaerobic chamber
- Removed from chamber, sparged with N₂ to remove H₂
- Injected purified ¹⁴C-TCE
- Measured VOCs by GC/FID
- Measured ¹⁴CO₂ by alkaline + acid sparging

¹⁴C assay for TCE degradation rate: Results for Microbial Insights

¹⁴C assay for TCE degradation rate: Microbial Insights

- Average degradation rate coefficient:
 ➤ k = 0.15 yr⁻¹ (95% CI = 0.11 to 0.18 yr⁻¹)
 ➤ t_{1/2} = 4.8 yr (3.9-6.2 yr)
- Includes effect of adsorption
- Adjustment to field conditions

Example Applications

Current applications of ¹⁴C assays of interest to the remediation community that will be covered today:

- Aerobic co-oxidation of TCE
- Degradation rates for TCE and cDCE in crushed rock or soil microcosms
 - > Ambient conditions
 - Improvement in rates with gentle heating
- Degradation rates for TCE to assess back diffusion from rock
- Aerobic biodegradation of 1,4-dioxane

Improvement in Rates of TCE Degradation with Gentle Heating

- Hypothesis: Gentle heating (e.g., up to ~20 °C above ambient) will significantly increase the rate of biologically mediated abiotic degradation of TCE
- Microcosms prepared with crushed sandstone + GW
- Anaerobic preparation and incubation
- Purified ¹⁴C-TCE added
- Incubated at 5 temperatures; range = 18-40 °C
- Monitored rate of ¹⁴C product formation
- Net rates = $k_{microcosms} k_{FSGW controls}$

Improvement in Rates of TCE Degradation with Gentle Heating

Lactate-amended rate of ¹⁴C product accumulation increased with temperature
 FSGW = filter sterilized groundwater (control)

Rates of TCE Degradation with Gentle Heating

u (kJ/mol)	θ	Temp (⁰C)
16.0	1.02	18, 25, 30
53.5	1.08	18, 25, 30
-	-	-
	u (kJ/mol) 16.0 53.5 -	u (kJ/mol) θ 16.0 1.02 53.5 1.08 - -

- $k_1 = k_2 \cdot \theta^{(T_1 T_2)}$
- Rate constants estimated based on ¹⁴C products
- Expected trend observed for 18-30 °C
- Rapid initial heating appeared to inhibit activity at 35 and 40 °C

Example Applications

Current applications of ¹⁴C assays of interest to the remediation community that will be covered today:

- Aerobic co-oxidation of TCE
- Degradation rates for TCE and cDCE in crushed rock or soil microcosms
 - > Ambient conditions
 - > Improvement in rates with gentle heating
- Degradation rates for TCE to assess back diffusion from rock
- Aerobic biodegradation of 1,4-dioxane

¹⁴C-TCE intact anaerobic rock core microcosms: SERDP Project ER-2622

- In order to model back diffusion from low permeability zones contaminated with TCE, need good estimates of degradation rates within the low permeability zone
- Developed a novel type of intact rock core microcosm to assess degradation within rock
- Prior results reported for sandstone without ¹⁴C-added
 ✓ Enrichment in δ¹³C-TCE and cDCE
- SERDP experimental design
 - ✓ 3 sites
 - ✓ 4 treatments in quadruplicate
 - ✓ One set received ¹⁴C-TCE, another set only TCE

Diffusion-Coupled Degradation of Chlorinated Ethenes in Sandstone: An Intact Core Microcosm Study

Rong Yu,[†] Richard G. Andrachek,[‡] Leo G. Lehmicke,[§] Amanda A. Pierce,^{||} Beth L. Parker,^{||} John A. Cherry,^{||} and David L. Freedman^{*,†}

¹⁴C-TCE intact anaerobic rock core microcosms: SERDP Project ER-2622

Schematic design of intact rock microcosm

Sample core

SERDP Project ER-2622

¹⁴C-TCE + TCE added (+ resazurin + Br⁻)

TCE added (+ resazurin + Br⁻)

Site #1 intact rock core microcosms

- Rock type: dolomite
- Fractured bedrock contaminated with TCE

SERDP Project ER-2622

- Accumulation of acetylene + ethene + ethane alone underestimates TCE degradation
- Transformation rates will be estimated based on a numerical model of the cores
- Outcome: TCE degradation rate constants that can be used to model back diffusion

Example Applications

Current applications of ¹⁴C assays of interest to the remediation community that will be covered today:

- Aerobic co-oxidation of TCE
- Degradation rates for TCE and cDCE in crushed rock or soil microcosms
 - > Ambient conditions
 - > Improvement in rates with gentle heating
- Degradation rates for TCE to assess back diffusion from rock
- Aerobic biodegradation of 1,4-dioxane

Aerobic biodegradation of 1,4-dioxane

- Aerobic biodegradation of 1,4-dioxane yields CO₂, biomass, and possibly soluble intermediates; how to document *in situ*?
- ¹⁴C assay developed as part of ESTCP Project ER-201730: *Development of a Quantitative Framework for Evaluating Natural Attenuation of 1,1,1-TCA, 1,1-DCA, 1,1-DCE, and 1,4-Dioxane in Groundwater*
- 7 sites selected, 4 wells per site
- 100 mL GW collected in 160 mL serum bottles + GW to prepare filter sterilized controls
- ¹⁴C-1,4-dioxane purchased from Moravek Biochemicals (in butanol)
- Purified by HPLC
- Added to serum bottles: ~160,000 dpm + ~160 ppb 1,4-dioxane
- Assay evaluated with CB1190 and ENV487

Test Procedure

Collect GW samples: Triplicate serum bottles + 2 L

Ship overnight on ice

Warm overnight to room temperature

Prepare triplicate filter sterilized GW controls – from 2 L sample Add purified ¹⁴C-1,4-dioxane to all bottles Measure initial conditions: ¹⁴C, 1,4-DX, VOCs, O₂ Sample weekly (5 mL) for 6 weeks:

measure ¹⁴C products

End of incubation analyses: ¹⁴C products, 1,4-DX, VOCs, O₂

Calculate $k_{net} =$ $k_{GW} - k_{ESGW}$ and net 95% Confidence Interval Additional incubation Measure 1,4-DX; if change is significant, recheck ¹⁴C products

Purification of ¹⁴C-1,4-dioxane

¹⁴C-1,4-Dioxane in *n*-butanol (Moravek Biochemicals)

Analysis of ¹⁴C-1,4-dioxane degradation products and rate

Aerobic biodegradation of 1,4-dioxane: 10 sites evaluated

Geographic diversity

■ ≥ 4 states; East coast, West coast, Midwest

Mix of Department of Defense and industrial sites

- All exhibit a decrease in C/C_o along plume axis
 - Range of 1,4-dioxane concentrations: 163-11,000 μg/L; median = 169 μg/L
 - Range of VOC co-contaminant concentrations: non-detect to 6 mg/L; 1,1-DCE from nondetect to 162 µg/L

3-5 wells sampled per site; repeat samples for 2 sites

Monitored: Δ^{14} C products; Δ 1,4-dioxane; VOCs; Δ O₂

ESTCP project (7/10 sites) also monitoring CSIA and relevant biomarkers

* = resampled; ** = nutrients added

Overall Evidence

	Site Conditions				Degradation	
Site	High levels of CVOCs?	Absence of co- substrate?	Low DO?	Low levels of 1,4-DX?	C vs. D, Biomarkers, CSIA	¹⁴ C Assay
#1	~	\sim	\sim		++	-
#2		\sim		\sim	+	+
#3					++	++
#4		 Image: A second s	\checkmark		++	+
#5	\sim	\sim	\checkmark		+	+
#6		\sim		 Image: A second s	+	+

- ¹⁴C generally matches C vs. D, biomarkers, CSIA
- 1,4-dioxane biodegradation not ubiquitous, but at least some evidence despite several unfavorable conditions

Aerobic biodegradation of 1,4-dioxane

- Obtained rate constants in 15/49 well samples from 7/10 sites, but most are low
- Rate constants determined by ¹⁴C assay are likely conservative
 - Lack of solid-phase and/or nutrient supply may suppress rates
 - O₂ is not limiting in the assay, may be *in situ*
- ¹⁴C assay may best be used as a screening step to be followed by microcosms with nutrients and/or soil
- VOCs reduce rates, but low levels are tolerable
- Reasonable reproducibility in repeat samples

Closing Thoughts

- ¹⁴C assays have the potential to fill a critical need
 - Potential to determine rates of transformation (biotic and abiotic) when the products are not discernable in situ
 - Provide supporting evidence for MNA or success of active remediation
- Some issues
 - > Assays are restricted to lab testing; how well do the results reflect *in situ* conditions?
 - Even short-term assays can take ~6 weeks
 - > Longer-term incubation and rock core microcosms may be restricted to research applications
 - How well do the predicted rates correlate to faster and less costly lines of evidence, e.g., biomarkers and CSIA
- ¹⁴C assays can be ordered through Microbial Insights

Who Did All the Work?

Rong Yu PhD Graduate Research Associate

Hao Wang PhD Candidate

Alex Ramos PhD Candidate

James Mills, IV MS Graduate Geosyntec (Tampa)

Bethany Byrd MS Candidate

Questions?

